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Abstract

Today replication has become thede factostandard for
storing data within and across data centers that process
data-intensive workloads. Erasure coding (a form of
software RAID), although heavily researched and theo-
retically more space efficient than replication, has com-
plex tradeoffs which are not well-understood by practi-
tioners. Today’s data centers have diverse foreground
and background data-intensive workloads, and getting
these tradeoffs right is becoming increasingly important.
Through a series of realistic data center deployment sce-
narios and workload characteristics, coupled with the im-
plementation of a prototype Hadoop library with erasure
codec functionalities, we revisit traditional metrics (per-
formance and dollar cost), present new tradeoffs (power
proportionality and complexity) and make recommenda-
tions on directions worth researching.

1 Introduction
Today’s modern data centers have “foreground” user-
facing workloads and “background” data intensive an-
alytical jobs that dig into the massive datasets to an-
swer customer’s inquiries or discover valuable insights.
These data-intensive jobs often useshipping code to data
frameworks, such as MapReduce [7] and Dryad [15].
We borrow the term Data-Intensive Scalable Comput-
ing (DISC [3]) workloads to describe the combination
of user-facing and analytical workloads.

To provide better reliability and availability, a certain
level of data redundancy is often needed. Many of the
data centers today useN -way data replication. An al-
ternative, erasure coding, has always been available and
much research has gone into it [1, 13, 17, 18, 19, 20, 22,
24, 25]. Erasure coding provides potential storage and
network savings to replication. For example, anm-of-n
erasure coding scheme encodes unit data inton frag-
mentsof size 1

m
such that anym of them reconstructs

the original data. While 3-way replication and3-of-5 era-
sure coding both tolerate 2 faults, the former requires3×

storage consumption, while the latter only requires1.6×.
So, while tolerating the same number of faults, less data

is written over the network onto storage.

So when is it appropriate to use erasure coding in prac-
tice? There are more complex tradeoffs involved than the
above simple ones. The gains of erasure coding tend to
be a fraction of its space saving depending on the ratio
of storage cost to total system cost for modern data cen-
ters. The diversity of workloads also affects the benefits
of erasure coding.E.g., the network savings of erasure
coding are clear when the workload is write-dominated.
DISC workloads, composed of client-facing foreground
and analytical background workloads, are both read and
write dominated, however. Erasure coding pays prices
for its savings too. It causes slower recovery from fail-
ures across data centers. It is also perceived as “com-
plex” by developers in industry, though this factor has
not been systematically evaluated.

With a goal of encouraging discussions on the mer-
its of erasure coding for DISC workloads, this paper
makes several contributions. We present realistic sys-
tem deployment scenarios (e.g., mega data centers and
container-based data centers) and workload characteris-
tics. We analyze several real foreground workloads from
online services, as well as background analytical work-
loads. For the latter, we have implemented a prototype
Hadoop library with erasure codec functionalities, and
this paper reports on tradeoffs involved, including code
size and state dependency [5] complexity metrics.

2 Environments and metrics
Unlike traditional enterprise environments, DISC sys-
tems and many data centers today leverage commodity
components, which are typically distributed and less reli-
able than customized hardware. Common fault tolerance
solutions adopted by commercial storage servers, such as
hardware RAID [17] or storage-area networks (SANs),
are often considered too expensive and not incremen-
tally scalable. DISC environments provide reliability and
availability mainly through software-based redundancy.
For example, replication is used by the Google File Sys-
tem [9] and Hadoop Distributed File System [14].

Storage is a key component in DISC environments, how-
ever, it is not the only one. Storage is often co-located

1



with computation and networking resources. Analytical
jobs have ashipping code to datarequirement for effi-
ciency. It must be possible to start analytical processes
on the same servers the data resides.

An implementation in Hadoop: Erasure coding has
workload-independent/dependent tradeoffs. To evaluate
them we have extended HDFS with erasure coding.1

Erasure coding is done at the block granularity (64MB
in HDFS), meaning that an HDFS client does not erasure
code within a single block, but waits to receivem blocks
before calculating and writingn − m parity blocks. The
m original data blocks are still sent out as soon as they
are ready, but a copy of each block is kept in mem-
ory to calculate parity data. We assume an environment
with battery-backed memory to handle failures whenm

blocks are being accumulated. Our system falls back to
replication when it can not accumulatem blocks within
30 seconds. We use the “cauchy good” algorithm in the
Jerasure library [18] for erasure calculations.

Our implementation is the first one in Hadoop that per-
forms erasure coding online, on the critical path. Another
recent implementation, DiskReduce [8], first performs
replication, then erasure codes data in the background.
In contrast, our system erasure codes data chunks when
they are created, therefore also reducing the network and
disk bandwidth usage.

Metrics: In evaluating the impact of erasure coding,
we discuss both traditional and new metrics. The for-
mer include performance, recovery time and infrastruc-
ture costs (in $). To these metrics we add a complexity
and an energy metric. In evaluating complexity we con-
sider both the code size and the NetComplex metric in-
troduced by Chunet al. [5]. The energy metric has two
components. The first is regarding the amount of energy
consumed per task or per GB of stored data. The second
is a function that relates energy consumption to the load
seen by the system. In particular, we assume the system
is employing “offloading” of requests as described in our
previous work [16] to enable power proportionality.

3 Workload-independent tradeoffs
Dollar savings: Table 1 shows the fraction of storage
cost for a mega-data center (Mega DC [12]) and a Condo-
based machine room [6]. The cost of a “wimpy” server
(FAWN [23]) is shown as a reference. A main takeaway
from this table is that the cost of raw storage space is
relatively small, unless the whole server is a storage node
(i.e., 50-90% of the server cost is storage-related). Using
a 3-of-5 erasure coding instead of the (pervasively used)
3-way replication is expected to save in the range of (8.4-

1Available at http://research.csc.ncsu.edu/palm/hadoop-ec.htm

# servers Cost/year Storage cost
Mega DC [12] 54k $81M 14-23-41%
Condo [6] 48 $71K 20-34-61%
FAWN [23] 1 $383 30%

Table 1: Storage cost in several sample systems. For
Mega DC and Condo, a 15 year amortization cost for
building and 3 year amortization cost for server is as-
sumed. According to [6], a server in Condo or Mega DC
costs $3000. We use three disk cost points to estimate
the storage cost: 30%, 50% and 90% of the server cost
($900, $1500, $2700 per server spent on disks).

14-25%) of the total cost for the Mega DC and (12-20-
37%) for the Condo-based one respectively. For a cluster
based on FAWN nodes, the savings are around 18%.

Cost during large-scale recovery: A main penalty paid
by erasure coding is decreased performance during re-
covery (when compared to replication). This might be
a serious concern when erasure coding is considered as
the redundancy mechanism across data centers, or across
availability domains within a large data center. Let’s con-
sider a power outage (e.g., the one that took down parts
of Amazon’s EC2 recently [2]) that fails one availability
domain. For both replication and erasure coding, data
reconstruction is needed to restore the redundancy level.
Whereas with replication clients can simply switch to us-
ing another availability domain, with erasure codingm

domains might need to be contacted for every read.

What about complexity?: The number one response
from developers when asked about using erasure coding
is that “it is too complex”. Quantifying complexity is
subjective. We provide two quantitative arguments here.
The first focuses on the notion of “state dependencies”,
as first defined by Chunet al. [5]. This metric captures
the number of nodes with state that must be contacted
before an algorithm can complete. Intuitively, the larger
the number of such nodes, the more things can go wrong,
stalling progress and making debugging harder.

When data is written to the system, with either scheme,
each hosting server is receiving a “single input, 1-hop
unicast” from the data source. This scenario has a com-
plexity of 1 + t, wheret refers to the complexity asso-
ciated with the network path relaying the message, and
is solely determined by the network topology of the sys-
tem. During data recovery (and reads), however, erasure
coding has higher complexity because more servers need
to be involved. Identical to the “single input,1-of-m
paths” and “single input,k-of-m paths” scenarios ([5])
respectively, the complexity of recovery is1 + m · t un-
derm-of-n erasure coding, and1 + t under replication.

The second metric is based on code size. In our imple-
mentation of erasure coding in Hadoop,∼ 1, 800 lines of
Java code is added or modified, out of a total of∼ 33, 500

2



lines in HDFS.∼ 1, 500 lines are on the HDFS client
(originally ∼ 2, 800 lines), while the other∼ 300 lines
are for bookkeeping of parity data. In addition, the Jera-
sure package is used for the calculation of parity data,
involving another∼ 1, 700 lines of C code (the entire li-
brary contains∼ 7, 500 lines). We want to stress that this
code can be written once and packaged in a library, and is
unlikely to require continuous maintenance (most func-
tions perform well-studied mathematical calculations).

Summary: Table 2 depicts the main workload-
independent tradeoffs when erasure coding is used with
a fixedn. The size of the arrows needs to be normal-
ized by the fraction of storage subsystem cost, latency
and complexity to the overall system.

m ⇑ storage cost⇓ latency⇑ complexity⇑

Table 2: Main workload-independent tradeoffs.

4 Workload-dependent tradeoffs
Reads and writes: Clearly erasure coding favors write-
intensive workloads as mentioned in Section 2. Ta-
ble 3 shows properties of IO traces (underneath the buffer
cache) for several foreground applications running at Mi-
crosoft’s data centers. It also shows three background an-
alytical jobs. We briefly describe these workloads below.

Hotmail: 48-hour email workload, containing both data
and metadata accesses. Email contents might be contin-
uously mined for spam detection and ad placement.

BLOB-DB (Windows Live Blob Metadata Server):These
metadata lookup servers hold user account mappings
for various blob storage services such as online photos,
videos, social networking, etc., over a period of 24 hours.

MSN-DB (MSN Content Aggregation Database Server):
This 24-hour trace is taken from a content publishing
system for an online portal front page and is updated by
mainly editorial tools and feed management systems via
web services. Most of the stored data is unstructured in
nature, consisting of either raw content or links to con-
tent on other partner sites.

Analytical jobs: We run three analytical jobs under
Hadoop, including two typical benchmarks on synthetic
data (sort and wordcount) and one real bioinformatics
application (CloudBurst[21]). Thesort job has almost
the same amount of input, intermediate and output data.
Assuming the input data is (already) written to the sys-
tem by foreground jobs, the read:write ratio for just the
processing stages is 0.67. Thewordcount job, which
counts the occurrence of each word in a document, has
much less output data than input and intermediate data,
and the read:write ratio is 5.04.CloudBurstis a DNA se-
quencing application, which returns a set of entries from
a reference genome dataset according to user specified

Workload R:W ratio TB
Hotmail 0.85 66
MSN-DB 1.99 0.4
Blob-DB 1.67 0.26
Analytical job - sort 0.67 N/A
Analytical job - wordcount 5.04 N/A
Analytical job - CloudBurst 0.74 N/A

Table 3: Read:write ratio for foreground and background
workloads, along with data size in TBs, identified using
the largest logical-block number (LBN) seen in the trace.
The higher the R:W ratio, the smaller the benefits of us-
ing erasure coding.

matching conditions. A typicalCloudBurstrun produces
only a small amount of output data, but intermediate
data size could be much larger than input. The overall
read:write ratio is 0.74.

Table 3 shows that our servers are provisioned as much
for reads as they are for writes. Thus, the network sav-
ings from using erasure coding need to be appropriately
scaled by the R:W ratio.

Network topology and replication policies: The net-
work topology and replication policies matter when ex-
amining the benefits of erasure coding. Consider an en-
vironment where each node is both a client and a storage
server. In that case, a node producing or collecting a
chunk of data might be one of its hosting nodes, mean-
ing thatm-of-n erasure coding needs to sendn−1

m
chunks

to remote nodes for each produced chunk, whileN -way
replication sendsN − 1. In this case,3-of-5 erasure cod-
ing, for example, would use33% less network bandwidth
than 3-way replication rather than45% as in a topology
where storage clients and servers run on disjoint nodes.

Data replication policies also have an impact in deter-
mining the network bottleneck. For example, if the client
sendsN replicas toN nodes, it is likely that the client’s
NIC will be a bottleneck (e.g., a 1Gbps NIC will only
have a “goodput” of close to 30MB/s for 3-way replica-
tion and close to 60MB/s for the3-of-5 scheme). But,
when we used Hadoop’s chain replication policy for the
analytical jobs, the client NIC was not a bottleneck any-
more (however, switches could become a bottleneck de-
pending on network activity from other clients).

Of course, more data is transmitted if the input, inter-
mediate, and output files of an analytical job are pro-
tected with replication rather than erasure coding when
they are generated. However, the exact end-to-end ef-
fects on throughput and latency might not simply scale
linearly with amount of data sent. For concreteness, to
stage a 6GB file into an HDFS of 8 data servers, it took
246 seconds with no redundancy, 393 seconds with 3-
way replication, and 389 seconds with 3-of-5 erasure
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coding. The replication policy, network topology, and
interactions with other client’s data all influence end-to-
end performance.

A closer look at analytical jobs: We examine the im-
pact of encoding schemes in different phases of the three
analytical jobs mentioned in Section 4. Thesort and
wordcountjobs process 6GB of data whileCloudBurst
uses a 4GB input reference file. Our testbed is a clus-
ter of 8 machines interconnected with 1Gbps Ethernet.
The execution times of the three jobs with different en-
coding schemes are shown in Figure 4, decomposed into
map, shuffleandreducephases. All experiments are per-
formed 3 times, with negligible variance.

Sort’s mapandreducephases are write-intensive.5-of-7
erasure coding has an improvement of 51% over 3-way
replication inreducerun time, the most significant win
of erasure coding out of all phases. Theshufflephase
mainly partitions the intermediate data on mappers and
merges the received partitions into sorted order before
reducers run. The performance of this stage is some-
what degraded by the bandwidth consumption of repli-
cating intermediate data. Overall,5-of-7 erasure coding
reduces 35% of run time over 3-way replication, while
3-of-5 performs slightly worse than5-of-7.

In thewordcountjob, however, the output volume is less
than 1

20
of input. As a result, encoding schemes have

much smaller impact on the overall performance. Differ-
ence in run time among all schemes is less than 5%.

Similar towordcount, CloudBurstalso outputs much less
data than input. However, the amount of intermediate
data is relatively large. Therefore, erasure coding wins
over replication by saving the network and disk band-
width in mapandshufflestages, the latter of which dom-
inates the total run time. The overall improvement of
5-of-7 encoding over 3-way replication is 29%.3-of-5
achieves a similar enhancement.

One may suspect that erasure coding hurts data locality
for MapReduce tasks – for each data chunk, having mul-
tiple distributed replicas reduces remote accesses with
Hadoop’s locality-aware task scheduling. However, we
have found that even without any replication, the great
majority of blocks are accessed locally. Compared with
no replication, 2-way replication improves the percent-
age of local accesses from 78% to 91% (sort), from
88% to 95% (wordcount), and from 82% to 93% (Cloud-
Burst). 3-way replication hardly provides any additional
improvement. Therefore, the negative impact of employ-
ing erasure coding on data locality is quite limited.

Power efficiency and proportionality: When the
servers are fully utilized, the amount of Joules/task will
clearly depend on the properties of the task (e.g., write-
vs. read-dominated). This metric is largely correlated

with performance and the same tradeoffs as discussed
above apply. To verify this, we measured the entire job’s
energy consumption on 8 nodes using power meters at-
tached to each machine. During the run time of the three
analytical jobs we have observed that different encoding
schemes (including replication) have similar Watt levels.
Their total energy consumptions are therefore approxi-
mately proportional to the execution time.

When the workload intensity decreases (many fore-
ground workloads have diurnal patterns) we have advo-
cated turning off servers [16] for better power propor-
tionality. The number of “gears” for a generalm-of-n
scheme isn − m + 1. For example, 3-way replication
has three gears (with 1, 2, or all 3 servers ON);3-of-5
has three gears too (with 3, 4 and 5 servers ON). The
mechanism for turning off servers has been discussed
previously [16] and is beyond the scope of this paper. It
is interesting to note that, once the data center has been
(over-)provisioned for replication, more machines can be
turned OFF than when erasure-coding is used.

Summary: The main workload-dependent tradeoffs,
shown in Table 4, are complex. Workload characteristics
(e.g., read:write ratio, access size, time spent in different
of MapReduce stages, etc.), network topology, and poli-
cies all matter to gauge the wins from erasure coding.
The size of the arrows for the performance metrics needs
to be normalized by the fraction of requests that benefit
(read:write ratio). “?” stands for “it depends”.

n ⇑ net.bw.⇑ write latency/thrpt.? gears⇑
m ⇑ − read latency? gears⇓

Table 4: Main workload-dependent tradeoffs.

5 Related work
The inspiration for using erasure coding to archive data
comes from the classic work on RAID [17] and later
AutoRAID [25]. This latter work valued savings from
such codes because storage space is a significant fraction
of the cost of a disk array. This holds true for a SAN
too, and more generally for a system whose only role
is to storage data durably [4]. Our work is orthogonal
to the above. We examine tradeoffs when using erasure
codes for non-archival workloads in data center environ-
ments, where computation, storage and networking are
co-located (i.e., no disk arrays or SANs). In such en-
vironments, commodity servers are being used. Unlike
traditional enterprise, where expensive RAID enclosures
and SCSI disks might be pervasive [4], in our environ-
ments the trend points to the FAWN [23] approach (even-
tually).

The tradeoffs of erasure coding and replication have been
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Figure 1: Execution time of analytical jobs

studied, but mostly from the performance perspective.
For example, the performance tradeoffs are known [18,
22, 24] and so is recovery time [17, 19, 24, 25]. We go
beyond single metric evaluations and provide a higher-
level discussion based on total system cost (hardware,
design complexity, and energy consumption) for the new
paradigm of data-intensive services.

The mechanisms for building distributed systems that use
erasure coding have been studied in academia [1, 8, 13]
and industry [20]. Work to make erasure coding more
power efficient is ongoing [11]. Our understanding of
erasure codes has benefited from these approaches.

6 Conclusions and directions
This paper aims to give a comprehensive overview of
virtues of erasure coding vs. replication for modern data
centers and encourage discussions around the topic. Our
analysis and experimental results show that the storage
cost advantage of erasure coding over replication ranges
from 8.4% to 37%, depending on the data center setup.
Its performance advantage is highly workload-dependent
and varies from<5% to>50%, to which the energy ad-
vantage is highly correlated. Depending on the system
and workload scale, such gains may or may not justify
the higher data recovery cost and software complexity.

One interesting topic for future research is to make data
redundancy related recommendations for a given sys-
tem setup and workload set, considering the many axis
of tradeoffs. It would also be interesting to analyze
the role of erasure coding on geo-distributed data. It is
likely that certain applications will require the data to be
stored across continents/countries, in multiple data cen-
ters. Would it make sense to replicate the data within
and across data centers? What will the cost of such per-
vasive replication be? Would the use of erasure codes
make sense within or across the data centers?
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